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Abstract 

Under the 2015 Paris Agreement, most nations have committed to limiting global warming to well below 2°C, and ideally to 1.5°C 

above pre-industrial levels [1]. To achieve this, the latest IPCC Special Report on Global Warming of 1.5°C [2] has demonstrated 

that carbon dioxide removal (CDR) — the direct removal of CO2 from the atmosphere — will be an indispensable component of 

future climate change mitigation pathways. Among almost all 1.5°C-consistent scenarios, CDR has been estimated to range 

between 189–1,186 GtCO2 by 2100 in integrated assessment models (IAMs). To attain that target, a mix of technologies will have 

to be deployed, predominantly on Bioenergy with Carbon Capture and Storage (BECCS) and Afforestation/Reforestation (AR) [2–

4] and possibly Direct Air Capture and Carbon Storage (DACCS), ocean fertilization, enhanced weathering (EW), biochar or soil 

carbon sequestration.  

During COP26, the rulebook for Article 6 of the Paris Agreement was completed. It sets market and non-market rules for 

international cooperation, which is frequently emphasized as critical to achieving a cost-effective deployment of CDR (Fajardy 

and Mac Dowell, 2020, Torvanger 2019) International cooperation is deemed to make it possible to leverage interregional 

differences in conditions and endowments to lower the total cost of CDR. However, such cooperation can only succeed if a mutually 

fair distribution of the costs and benefits can be achieved. 

The purpose of this paper is thus to investigate the feasibility of such a cooperation. Our approach follows three successive steps. 

First, we provide a model-based assessment of the collective gains that can be achieved by such an international cooperation. 
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Second, we investigate whether the conditions for such a mutually acceptable sharing of that collective benefit hold. Lastly, we 

evaluate several alternative gain-sharing options and compare their performances.   

Our findings convey important policy implications pertaining to the elaboration of relevant, pragmatic recommendations to 

envisage CDR deployment. They also provide useful guidance to policymakers and international negotiators.  

Methods 

Our analysis is based on the application of cooperative game-theoretic notions [13]. Cooperative game theory analyses the 

distribution of gains resulting from cooperation between economic players. Its application requires an application of the cost 

(respectively benefits) that can collectively be incurred (respectively obtained) by any subgroup of regions. Indeed, if a certain 

subgroup of regions assesses that it pays more than it could do by itself then this group may abandon the negotiations with the other 

regions and opt for a stand-alone attitude (i.e., develop its own CDR).  

In this paper, we consider a group of regions in Brazil, China, the European Union (EU-27 and the UK), India and the United 

States. To compute the costs and benefits obtained by each region and each group of regions, we specify and solve several instances 

of a detailed, large-scale model. We use the Modelling and Optimization of Negative Emissions Technologies (MONET) 

framework [14], which determines the least-costly deployment of a portfolio of CDR options across.  
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